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Abstract. The structure of Yukawa coupling matrices is investigated in type IIA T 6/(Z2 × Z2) orientifold
models with intersecting D-branes. Yukawa coupling matrices are difficult to be made realistic in conventional
models in which the generation structure emerges by the multiple intersection of D-branes in the factorized
T 6 = T 2 × T 2 × T 2. We study the new type of flavor structure, where Yukawa couplings are dynamically
generated, and show this type of models lead to non-trivial structures of Yukawa coupling matrices, which
can be realistic.

1 Introduction

Understanding the masses and flavor mixing of quarks and
leptons is one of the most important issues in particle
physics. New physics which derives Yukawa coupling ma-
trices in the standard model should certainly exist. Yukawa
couplings, in a sense, seem naturally of O(1). Thus, how to
derive suppressed Yukawa couplings is a key to understand
the hierarchy of fermion masses and mixing angles.

String theory, which is a candidate for a consistent the-
ory of quantum gravity, gives an attractive framework to
generateYukawa couplingmatrices. Indeed, in several types
of string models coupling selection rules have been studied
and Yukawa couplings have been calculated. Recent devel-
opment of the models with intersecting D-branes, intersect-
ing D-brane models (see [1–4] for the essential idea), opens
a new possibility towards realistic models. Among them,
models with low-energy supersymmetry [4–15] are inter-
esting, because those are constructed as stable solutions of
the string theory. Within the framework of intersecting D-
brane models, open string modes corresponding to matter
fields and Higgs fields are localized at intersecting points
between D-branes [16]. The flavor number is obtained as
intersecting numbers of D-branes in conventional models.

Intersecting D-brane models have several interesting
aspects from phenomenological viewpoints. In particular,
their Yukawa couplings have a phenomenologically impor-
tant feature. Calculation of Yukawa couplings in inter-
secting D-brane models [17–21] is similar to the Yukawa
calculation of twisted strings in heterotic orbifold mod-
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els [22–24]1. These Yukawa couplings in both intersecting
D-brane models and heterotic orbifold models depend on
localized points of matter modes and moduli corresponding
to the volume of compact space. Thus, Yukawa couplings
are, in general, non-universal and can lead to suppressed
values. Indeed, heterotic orbifold models have possibilities
for realizing realistic Yukawa matrices [25]. Also intersect-
ing D-brane models have the potential to lead to realistic
Yukawa matrices, but most of the intersecting D-brane
models, which have been constructed so far, seem to lead
to the factorizable form of Yukawa matrices, yij = aibj ,
that is, rank-one matrices. With this form of Yukawa matri-
ces, one can derive only a non-vanishing mass for the third
family, but vanishing values for other lighter masses and
mixing angles [26]. Hence, it is quite important to study
the new type of flavor structure which can lead to non-
vanishing mixing angles and light fermion masses within
the framework of intersecting D-brane models.

In [15] one of the authors has proposed an intersecting
D-brane model with a new type of flavor structure, where
quarks, leptons and Higgs doublets appear as composite
fields. In this model, Yukawa couplings are dynamically
generated. Since the origin of flavors is different from the
one in the conventional models, the structure of Yukawa
coupling matrices can be different from the one in conven-
tional models. In this paper we investigate the structure
of Yukawa coupling matrices of the model and show that
the non-trivial form of Yukawa matrices is obtained in
this framework of Yukawa coupling generations, e.g. non-
vanishing mixing angles. Thus, our scenario is interesting
if one wants to realize realistic values of fermion masses
and mixing angles.

1 Yukawa couplings in heterotic models are calculable, be-
cause the string is solvable on orbifolds.
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This paper is organized as follows. In Sect. 2, we give
a brief review on intersecting D-brane models. Then, we
discuss the structure of Yukawa coupling matrices in con-
ventional models. We point out that it is difficult to have
realistic structure in general. In Sect. 3 we briefly intro-
duce a model of dynamical generation of Yukawa couplings
which is proposed in [15]. In Sect. 4 a detailed analysis of
the structure of Yukawa coupling matrices is given. We
show that our framework of the Yukawa coupling gener-
ation derives a non-trivial structure of Yukawa matrices,
which can be realistic. Section 5 is devoted to conclusions
and discussions.

2 Intersecting D-brane models
and Yukawa couplings

2.1 Intersecting D-brane models

Here we give a brief review on intersecting D-brane models.
Consider the type IIA superstring theory compactified on
T6/(Z2 ×Z2) orientifold, where T6 = T2 ×T2 ×T2. The
type IIA theory is invariant under the Z2 × Z2 transfor-
mation

θ : Xk
± → e±i2πvkXk

±, (1)

ω : Xk
± → e±i2πwkXk

±, (2)

where v = (0, 0, 1/2,−1/2, 0) and w = (0, 0, 0, 1/2,−1/2)
and

Xk
± =




1√
2

(±X2k + X2k+1
)
, for k = 0,

1√
2

(
X2k ± iX2k+1

)
, for k = 1, 2, 3, 4,

(3)

with space-time coordinates Xµ, µ = 0, 1, . . . , 9. The type
IIA theory is also invariant under the ΩR transformation,
where Ω is the world-sheet parity transformation and

R :

{
Xi → Xi, for i = 0, 1, 2, 3, 4, 6, 8,

Xj → −Xj , for j = 5, 7, 9.
(4)

We mod out the theory by the action of θ, ω, ΩR and their
independent combinations.

A D6a-brane stretching over our three-dimensional
space and winding in compact T2 × T2 × T2 space is
specified by the winding numbers in each torus:[(

n1
a, m1

a

)
,
(
n2

a, m2
a

)
,
(
n3

a, m3
a

)]
. (5)

A D6a-brane is always accompanied by its orientifold image
D6a′ whose winding numbers are[(

n1
a,−m1

a

)
,
(
n2

a,−m2
a

)
,
(
n3

a,−m3
a

)]
. (6)

The number of intersections between D6a-brane and D6b-
brane is given by

Iab =
3∏

i=1

(
ni

ami
b − mi

ani
b

)
. (7)

Table 1. General massless field contents on intersecting D6-
branes. In the aa sector, the gauge symmetry is USp(Na) or
U(Na/2) corresponding to whether D6a-brane is parallel or not
to some O6-plane, respectively. In the aa′ +a′a sector, k is the
number of tilted torus, and IaO6 is the sum of the intersection
numbers between D6a-brane and all O6-planes

sector field
aa U(Na/2) or USp(Na) gauge multiplet.

3 U(Na/2) adjoint or 3 USp(Na)
anti-symmetric tensor chiral multiplets.

ab + ba Iab (�a, �̄b) chiral multiplets.
ab′ + b′a Iab′ (�a, �b) chiral multiplets.
aa′ + a′a 1

2

(
Iaa′ − 4

2k IaO6
)

symmetric tensor
chiral multiplets.
1
2

(
Iaa′ + 4

2k IaO6
)

anti-symmetric tensor
chiral multiplets.

The intersecting angles, θi
a with i = 1, 2, 3, between D6a-

brane and X4, X6 and X8 axes in each torus are given by

θi
a = tan−1

(
χi

mi
a

ni
a

)
, (8)

where χi are the ratios of two radii of each torus: χi ≡
R

(i)
2 /R

(i)
1 . The system has supersymmetry, if θ1

a+θ2
a+θ3

a =
0 is satisfied for all a. The configuration of intersecting
D6-branes should satisfy the following Ramond–Ramond
tadpole cancellation conditions,∑

a

Nan1
an2

an3
a = 16, (9)

∑
a

Nan1
am2

am3
a = −16, (10)

∑
a

Nam1
an2

am3
a = −16, (11)

∑
a

Nam1
am2

an3
a = −16, (12)

where Na is the multiplicity of the D6a-brane, and we are
assuming three rectangular (untilted) tori. The Neveu–
Schwarz–Neveu–Schwarz tadpoles are automatically can-
celled, when Ramond–Ramond tadpole cancellation con-
ditions and the supersymmetry conditions are satisfied.

There are four sectors of open string corresponding to
on which D6-branes two ends of open string are fixed: aa,
ab+ba, ab′+b′a, aa′+a′a sectors. Each sector gives matter
fields in four-dimensional low-energy effective theory. The
general massless field contents are given in Table 1. A
common problem of the model building in this framework
is the appearance of the massless adjoint fields in the aa
sector, since there are no massless matter fields in the
adjoint representation under the standard model gauge
group in Nature. These fields are expected to be massive
in the case of a curved compact space, because these are
the moduli fields of D6-brane configurations.
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2.2 The Yukawa coupling structure
in conventional models

The magnitude of Yukawa couplings among localized open
stringmodes can be calculated by the conformal field theory
technique like heterotic orbifold models. The important
part of 3-point interactions y is evaluated by the classical
part as [17–19]

y ∼ e−Scl ∼
∏

i

e−Σi/2πα′
. (13)

Here, Scl denotes the action of the classical string solution
Xcl, which have the asymptotic behavior corresponding to
local open string modes near intersecting points, and Scl is
obtained as a product of the triangle areas Σi on the ith T 2 ,
which string sweeps to couple. These Yukawa couplings can
lead to suppressed values when intersecting points are far
away each other. Thus, intersecting D-brane models have
the potential to realize the hierarchy of fermion masses and
mixing angles.

Here, however, we discuss the difficulty to generate a re-
alistic structure of Yukawa coupling matrices in the models
from type IIA T 6/(Z2 × Z2) orientifolds with intersecting
D-branes. The 6-dimensional torus is assumed to be fac-
torizable: T 6 = T 2 × T 2 × T 2.

As an illustrating example, let us consider a toy model
with three D6-branes, the D63-brane for SU(3)c gauge sym-
metry, the D62-brane for SU(2)L gauge symmetry and the
D61-brane for one component of U(1)Y gauge symmetry,
and a very simple configuration of intersecting numbers,

Iab =


 0 1 3

−1 0 3
−3 −3 0




ab

, (14)

where a, b = 1, 2, 3. This system gives three generations of
quarks, three left-handed quark doublets and three right-
handed quark singlets, and one Higgs doublet with Yukawa
couplings. The total intersecting number Iab of D6a-brane
and D6b-brane is given by the multiplications of three inter-
secting numbers of the D6a-brane and D6b-brane in each of
three tori. The structure of the Yukawa coupling is not fully
determined by the intersecting number, but it depends on
the configuration of the intersection in each of three tori.

The intersecting number I12 = 1 means one Higgs dou-
blet field localizing a point in each of three tori. The inter-
secting number I13 = 3 means three intersections in one of
three tori and one intersection in the other two tori. The
same is true for I23 = 3. Therefore, we have two different
configurations of intersection:
(1) D61-brane and D63-brane intersect three times in a
torus in which D62-brane and D63-brane also intersect
three times, or
(2) D61-brane and D63-brane intersect three times in a
torus in which D62-brane and D63-brane intersect once.

In both cases, the Yukawa couplings are evaluated by
(13). The quantum part also contributes to Yukawa cou-
plings, but gives O(1) of common factor. In case (1) the
Yukawa matrix can become hierarchical but always diago-
nal. In this case the D63-brane should wind three times in

a torus and intersect with each D61-brane and D62-brane
once in each winding. This gives definitely three pairs of
right-handed and left-handed quarks and defines three gen-
erations without mixing. The values of Yukawa couplings
are determined by the areas of triangles which are deter-
mined by the place of each pair of quarks and Higgs doublet.
In this case we cannot have flavor mixing. This structure
of Yukawa coupling matrix seems unable to be modified
by the quantum corrections in supersymmetric models.

In case (2) we always have the factorized structure of
the Yukawa coupling matrix:

yij ∝ aibj , (15)

where i, j = 1, 2, 3. In a torus where the D61-brane in-
tersects three times with the D63-brane three left-handed
quarks localize at one point and the Higgs doublet also
localizes at one point. We have three triangle areas which
determine the value of ai or bi. The same is true for the
torus where the D62-brane intersects three times with the
D63-brane. Therefore, the Yukawa coupling matrix is the
multiplication of the contribution from each three torus.
Furthermore, the Kähler metric depends on the twisted
angles of the open string [20]. The twisted angle of open
strings corresponding to three left-handed quarks is com-
mon, and we also have the same twisted angle for three
right-handed quarks. Thus, the Kähler metric is relevant to
only the overall magnitude of Yukawa matrices, but irrele-
vant to the ratios of entries in Yukawa matrices. In this case
we cannot have a realistic mass spectrum, since the rank
of the Yukawa coupling matrix is one. This structure of
Yukawa coupling matrix also seems unable to be modified
by the quantum corrections in supersymmetric models.

We have discussed the problem in the simplified model,
but most of the models seem to have almost the same
problem. In particular, it seems difficult to derive non-
vanishing mixing angles as well as lighter fermion masses.
There are several possibilities to overcome this difficulty.

First, we can try to construct models with some further
complications by arranging the configuration of D6-branes.
For example, introduction of many Higgs doublets may
solve the problem [27], though it is not experimentally fa-
vored. To have three generations utilizing orientifold image
D6-branes may give a way to solve the problem, though
we will have relatively many unwanted exotic fields.

The second way is to change the structure of the com-
pactified space. Leaving from the factorizable case T 6 =
T 2 ×T 2 ×T 2 to T 6 = T 4 ×T 2, for example, may make the
situation completely change. But the physics becomes less
intuitive and the analysis becomes much more complicated.

The third way is to change the origin of the generation.
This is the way we are going to take in this paper. In the next
section, we introduce a model in which the generation is
not originated from the multiple intersection of D6-branes.

3 A model of dynamically generated
Yukawa couplings

In this section we give a brief description of the model
which has been introduced in [15].
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Table 2. Configuration of intersecting D6-branes. All three tori
are considered to be rectangular (untilted). Three D6-branes,
D64, D65 and D66, are on top of some O6-planes

D6-brane winding number multiplicity

D61 [(1, −1), (1, 1), (1, 0)] 4
D62 [(1, 1), (1, 0), (1, −1)] 6 + 2
D63 [(1, 0), (1, −1), (1, 1)] 2 + 2
D64 [(1, 0), (0, 1), (0, −1)] 12
D65 [(0, 1), (1, 0), (0, −1)] 8
D66 [(0, 1), (0, −1), (1, 0)] 12

The D6-brane configuration of the model is given in Ta-
ble 2. Both tadpole cancellation conditions and supersym-
metry conditions are satisfied in this configuration under
the conditions of χ1 = χ2 = χ3 ≡ χ. The D62-brane system
consists of twoparallelD6-braneswithmultiplicities six and
two which are separated in the second torus in a consistent
way with the orientifold projections. The D63-brane sys-
tem consists of two parallel D6-branes with multiplicity two
which are separated in the first torus in a consistent way to
the orientifold projections. The D61-, D62- and D63-branes
give the gauge symmetries of U(2)L = SU(2)L × U(1)L,
U(3)c ×U(1) = SU(3)c ×U(1)c ×U(1) and U(1)1 ×U(1)2,
respectively. The hypercharge is defined as

Y

2
=

1
2

(
Qc

3
− Q

)
+

1
2

(Q1 − Q2) , (16)

where Qc, Q, Q1 and Q2 are charges of U(1)c, U(1), U(1)1
and U(1)2, respectively. The additional non-anomalous
U(1) charge, QR, is defined as

QR = Q1 − Q2. (17)

The remaining three U(1) gauge symmetries which are
generated by QL (namely U(1)L), Qc + Q and Q1 + Q2
are anomalous, and their gauge bosons have masses of the
order of the string scale. These three anomalous U(1) gauge
symmetries are independent from the two non-anomalous
U(1) gauge symmetries: tr((Y/2)QL) = 0, for example.

A schematic picture of the configuration of intersecting
D6-branes of this model is given in Fig. 1. There are no
ab′+b′a,aa′+a′a sectors of open string in this configuration.
The massless particle contents are given in Table 3. In this
table it is assumed that all twelve D6-branes of D64 are
on top of one of eight O6-branes with the same winding
numbers. The same is also assumed for eight and twelve
D6-branes of D65 and D66.

Webreak threeUSp(12)D64 ,USp(8)D65 andUSp(12)D66

gauge symmetries to the factors of USp(2) gauge symme-
tries by configuring D6-branes of D64, D65 and D66 as
in Fig. 2. The resultant gauge symmetries are respectively
as follows:

USp(12)D64 −→ 6⊗
α=1

USp(2)D64,α, (18)

USp(8)D65 −→ 4⊗
a=1

USp(2)D65,a, (19)

D61

D62

D66

D64 D63D65

-1 +1

-1

+1

U(2)L

U(1) (USp(2))6U(3)c U(1)
U(1)(USp(2))4

(USp(2))6

+1 -2

+2

+2

-1

Fig. 1. Schematic picture of the configuration of intersecting
D6-branes. This picture describes only the configuration of the
intersection of the D6-branes with each other, and the relative
place of each D6-brane has no meaning. The number at the
intersection point between D6a- and D6b-branes denotes the
intersection number Iab with a < b

Table 3. Low-energy particle contents before “hypercolor” con-
finement. The fields from the aa sectors are neglected for sim-
plicity

sector SU(3)c × SU(2)L × USp(8) field
× USp(12)D64 × USp(12)D66

(Y/2, QR)(QL, Qc + Q, Q1 + Q2)

D61 · D62 (3∗, 2, 1, 1, 1)(−1/6,0)(+1,−1,0) × 2 q̄i

(1, 2, 1, 1, 1)(+1/2,0)(+1,−1,0) × 2 l̄i

D61 · D64 (1, 2, 1, 12, 1)(0,0)(−1,0,0) D

D62 · D64 (3, 1, 1, 12, 1)(+1/6,0)(0,+1,0) C

(1, 1, 1, 12, 1)(−1/2,0)(0,+1,0) N

D61 · D63 (1, 2, 1, 1, 1)(+1/2,+1)(−1,0,+1) × 2 H
(1)
i

(1, 2, 1, 1, 1)(−1/2,−1)(−1,0,+1) × 2 H̄
(2)
i

D61 · D65 (1, 2, 8, 1, 1)(0,0)(+1,0,0) T

D63 · D65 (1, 1, 8, 1, 1)(+1/2,+1)(0,0,−1) T (+)

(1, 1, 8, 1, 1)(−1/2,−1)(0,0,−1) T (−)

D62 · D63 (3, 1, 1, 1, 1)(−1/3,−1)(0,+1,−1) × 2 d̄i

(3, 1, 1, 1, 1)(+2/3,+1)(0,+1,−1) × 2 ūi

(1, 1, 1, 1, 1)(−1,−1)(0,+1,−1) × 2 ēi

(1, 1, 1, 1, 1)(0,+1)(0,+1,−1) × 2 ν̄i

D62 · D66 (3∗, 1, 1, 1, 12)(−1/6,0)(0,−1,0) C̄

(1, 1, 1, 1, 12)(+1/2,0)(0,−1,0) N̄

D63 · D66 (1, 1, 1, 1, 12)(+1/2,+1)(0,0,+1) D̄(+)

(1, 1, 1, 1, 12)(−1/2,−1)(0,0,+1) D̄(−)

USp(12)D66 −→ 6⊗
α=1

USp(2)D66,α. (20)

All of these USp(2) gauge intersections can be naturally
stronger than any other unitary gauge interactions. If we
choose κ4Ms ∼ 1 and χ ∼ 0.1, where κ4 =

√
8πGN,

Ms = 1/
√

α′, the dynamical scales of all USp(2) gauge
interactions are of the order of Ms, and the values of the
standard model gauge coupling constants are reasonably
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4,5,6

1,2,3

2,
4,
6

2,
3,
4,
5

1,
6(6)

(6)

(6) (6)

(8) (4)

(4) (4)

(4)

1,4

2,3
1,
3

2,
4

4,5,6

1,2,3

1,
3,
5

3,
5,
6

(6)

(6)

(6)

(6)

1,
2,
4

2,
4,
6

(6)

(6)

D64

D65

D66

1,
3,
5

(4)

(8)

1,
2,
3,
4

Fig. 2. Configurations of twelve, eight and twelve D6-branes
of D64-, D65- and D66-branes, respectively.The numbers in
brackets are multiplicities of D6-brane stacks, and the numbers
without brackets specify one of the USp(2) gauge groups in
(18), (19) and (20). See the footnote for details

of O(0.01) at the string scale. We call these strong USp(2)
interactions “hypercolor” interactions.2

The field content in the intersecting D61–D62–D64 sec-
tor (left-handed sector) is given in Table 4. The confinement
of six USp(2)D64,α gauge interactions gives six generations
of left-handed quark and lepton doublets:

CαDα ∼ qα, NαDα ∼ lα, (21)

where α = 1, 2, . . . , 6. Two of these six left-handed quark
doublets and two of these six left-handed lepton doublets
become massive through the string-level Yukawa interac-
tions of

Wleft =
∑
i,α

gleft−q
iα q̄iCαDα +

∑
i,α

gleft−l
iα l̄iNαDα, (22)

where i = 1, 2. We have four massless generations of left-
handed quark and lepton doublets. The values the of masses

2 We have many vector-like matters in the configuration of
Fig. 2, since, for example, D6-branes of D64 and D65 overlap
in the third torus and intersect in other tori. These vector-like
matters spoil asymptotic freedom of “hypercolor” dynamics.
But, these vector-like matters get masses of Planck scale, if we
move four D-branes of each USp(2) (two D-branes and their
images) a little away from orientifold planes in one torus in
a consistent way with orientifold projections and avoid over-
lapping. This procedure does not change the gauge symmetry
and chiral matter contents of the model. In the estimation
of the Yukawa couplings, we do not consider this fine struc-
ture of the D-brane configuration, since it does not change our
main results.

Table 4. Field contents of the left-handed sector. Here, i = 1, 2
and α = 1, 2, . . . , 6

sector (SU(3)c×SU(2)L)×(USp(2)1×USp(2)2× field

USp(2)3×USp(2)4×USp(2)5×USp(2)6)D64

(Y/2, QR)(QL, Qc + Q, Q1 + Q2)

D61 · D62 (3∗, 2)(1, 1, 1, 1, 1, 1)(−1/6,0)(+1,−1,0) × 2 q̄i

(1, 2)(1, 1, 1, 1, 1, 1)(+1/2,0)(+1,−1,0) × 2 l̄i

D61 · D64 (1, 2)(2, 1, 1, 1, 1, 1)(0,0)(−1,0,0) Dα

(1, 2)(1, 2, 1, 1, 1, 1)(0,0)(−1,0,0)

(1, 2)(1, 1, 2, 1, 1, 1)(0,0)(−1,0,0)

(1, 2)(1, 1, 1, 2, 1, 1)(0,0)(−1,0,0)

(1, 2)(1, 1, 1, 1, 2, 1)(0,0)(−1,0,0)

(1, 2)(1, 1, 1, 1, 1, 2)(0,0)(−1,0,0)

D62 · D64 (3, 1)(2, 1, 1, 1, 1, 1)(+1/6,0)(0,+1,0) Cα

(3, 1)(1, 2, 1, 1, 1, 1)(+1/6,0)(0,+1,0)

(3, 1)(1, 1, 2, 1, 1, 1)(+1/6,0)(0,+1,0)

(3, 1)(1, 1, 1, 2, 1, 1)(+1/6,0)(0,+1,0)

(3, 1)(1, 1, 1, 1, 2, 1)(+1/6,0)(0,+1,0)

(3, 1)(1, 1, 1, 1, 1, 2)(+1/6,0)(0,+1,0)

(1, 1)(2, 1, 1, 1, 1, 1)(−1/2,0)(0,+1,0) Nα

(1, 1)(1, 2, 1, 1, 1, 1)(−1/2,0)(0,+1,0)

(1, 1)(1, 1, 2, 1, 1, 1)(−1/2,0)(0,+1,0)

(1, 1)(1, 1, 1, 2, 1, 1)(−1/2,0)(0,+1,0)

(1, 1)(1, 1, 1, 1, 2, 1)(−1/2,0)(0,+1,0)

(1, 1)(1, 1, 1, 1, 1, 2)(−1/2,0)(0,+1,0)

are given as gleft−q
iα ΛL and gleft−l

iα ΛL, where ΛL denotes the
dynamical scale of USp(2)D64,α. The detailed structure of
the Yukawa coupling matrix gleft−q

iα is discussed in the next
section. Exactly the same happens in the intersecting D62–
D63–D66 sector (right-handed sector). The confinement of
six USp(2)D66,α gauge interactions gives six generations of
right-handed quarks and leptons:

C̄αD̄
(−)
α ∼ uα, C̄αD̄

(+)
α ∼ dα,

N̄αD̄
(−)
α ∼ να, N̄αD̄

(+)
α ∼ eα. (23)

We have four massless generations of right-handed quarks
and leptons through the string-level Yukawa interactions of

Wright =
∑
i,α

gright−u
iα ūiC̄D̄(−) +

∑
i,α

gright−d
iα d̄iC̄D̄(+)

(24)

+
∑
i,α

gright−ν
iα ν̄iN̄D̄(−) +

∑
i,α

gright−e
iα ēiN̄D̄(+).

The detailed structure of the Yukawa coupling matrices
gright−u

iα and gright−d
iα is also discussed in the next section.

The values of masses are given as gright−u
iα ΛR and gright−d

iα ΛR
with the dynamical scale of USp(2)D66,α. Here, we stress
that the origin of generation in thismodel is not themultiple
intersections of D6-branes, but the number of different D6-
branes with the same winding numbers.
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A similar thing happens in the intersecting D61–D63–
D65 sector (Higgs sector). The confinement of two
USp(2)D65,a gauge interactions gives eight composite
Higgs fields:

TaT (+) ∼ H(2)
a , TaT (−) ∼ H̄(1)

a , (25)

where a = 1, 2, 3, 4. Four of these eight composite Higgs
fields become massive through the string-level Yukawa in-
teractions of

WHiggs =
∑
i,a

g
(1)
ia H

(1)
i TaT (−)

a +
∑
i,a

g
(2)
ia H̄

(2)
i TaT (+)

a . (26)

The masses of four pairs of Higgs fields are given as
g
(1)
ia ΛH and g

(2)
ia ΛH , where ΛH is the scale of dynamics

of USp(2)D65,a. Two pairs of composite Higgs fields re-
main massless.

From Fig. 1 we see the existence of the following inter-
actions:

W6−fields =
6∑

α,β=1

4∑
a=1

gu
αβa

M3
s

[CαDα][C̄βD̄
(−)
β ][TaT (+)

a ]

+
6∑

α,β=1

4∑
a=1

gd
αβa

M3
s

[CαDα][C̄βD̄
(+)
β ][TaT (−)

a ]

+
6∑

α,β=1

4∑
a=1

gν
αβa

M3
s

[NαDα][N̄βD̄
(−)
β ][TaT (+)

a ]

+
6∑

α,β=1

4∑
a=1

ge
αβa

M3
s

[NαDα][N̄βD̄
(+)
β ][TaT (−)

a ].

(27)

After the “hypercolor” confinement these interactions give
Yukawa interactions for the mass generation of quarks and
leptons. The Yukawa coupling matrices are given by

yu
αβa � gu

αβa

ΛLΛRΛH

M3
s

∼ gu
αβa, (28)

yd
αβa � gd

αβa

ΛLΛRΛH

M3
s

∼ gd
αβa, (29)

yν
αβa � gν

αβa

ΛLΛRΛH

M3
s

∼ gν
αβa, (30)

ye
αβa � ge

αβa

ΛLΛRΛH

M3
s

∼ ge
αβa, (31)

since all the scales of dynamics, ΛL, ΛR and ΛH are of the
order of the string scale Ms. The detailed structure of these
Yukawa coupling matrices gu

αβa and gd
αβa is investigated in

the next section.

4 The structure of Yukawa coupling matrices

Herewe investigate the structure ofYukawa couplingmatri-
ces for quark masses of the model introduced in the previous

section. We do not require the realistic µ-term (realistic
value of the Higgs mass), since the aim of the analysis
is simply to show the possibility of having a non-trivial
structure of Yukawa coupling matrices, e.g. non-vanishing
mixing angles. The possibility of entire mass generation of
quarks and leptons in this kind of models will be investi-
gated in future works.

First, we evaluate the Yukawa coupling matrices gleft−q
iα

in (22) and gright−u
iα and gright−d

iα in (24) by using (13). Three
Yukawa-interacting fields are localized at three intersection
points of these three D6-branes. The Yukawa couplings,
gleft−q

iα , gright−u
iα and gright−d

iα , are obtained as

gleft−q =
(

ε3 ε2 1 ε2
1ε2 ε2

1 ε2
1ε2ε3

ε2
1ε3 ε2

1ε2 ε2
1 ε2 1 ε2ε3

)
, (32)

gright−u =
(

1 ε2 ε1 ε2ε
2
3 ε1ε

2
3 ε1ε2ε

2
3

ε2
3 ε2ε

2
3 ε1ε

2
3 ε2 ε1 ε1ε2

)
, (33)

gright−d =
(

ε1 ε1ε2 1 ε1ε2ε
2
3 ε2

3 ε2ε
2
3

ε1ε
2
3 ε1ε2ε

2
3 ε2

3 ε1ε2 1 ε2

)
, (34)

where εi = exp(−Ai/2πα′) and Ai is the 1/8 of the area
of the ith torus. In general, classical solutions with larger
area also contribute to the Yukawa couplings. However, we
have used the approximation that the classical action cor-
responding to the minimum area contributes dominantly
to the Yukawa couplings. In the following we assume that
all Ai are larger than 2πα′, namely ε < 1. From these re-
sults we can say in good approximation that the massless
left-handed quark doublets are q1, q2, q4 and q6, and the
massless right-handed down-type quarks are d1, d2, d4 and
d6. For right-handed up-type quarks, u2, u3, u6 and one
linear combination of u4 and u5 are approximately mass-
less. Especially, in case of ε1 � ε2, u2, u3, u5 and u6 are
approximately massless, and in case of ε2 � ε1, u2, u3, u4
and u6 are approximately massless.

Although it is not easy to calculate the 6-point coupling
matrices of gu

αβa and gd
αβa in (27), generic n-point functions

have been analyzed in [28]. Our purpose is not to realize
precisely realistic fermion masses and mixing angles, but to
show that a new type of non-trivial Yukawa matrices can be
derived in our scenario, e.g. suppressed but non-vanishing
mixing angles. For such purpose, an approximation, which
is reliable to order estimation on the suppression factors,
is sufficient. The 6-point function consists of classical and
quantum contributions, i.e. ZclZq, like the 3-point and 4-
point functions. The classical part Zcl is important for our
purpose because that can lead to a suppression factor, while
the quantum part is expected to be of O(1) and does not
contribute to lead to a suppression factor. The classical
part is written as Zcl =

∑
Xcl

e−Scl like (13), where Xcl
are the classical string solutions, which have the asymp-
totic behavior corresponding to local open string modes
near intersecting points. the minimum The minimum ac-
tion corresponds to the sum of the areas of hexagons with
six intersecting points on each torus [28]. Hence, in order to
give an order estimation of the 6-point couplings gu,d

αβa, we
use the approximation that gu,d

αβa ∼ ∏
i e−Σi/2πα′

, which is
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the same as (13) except for simply replacing the triangu-
lar areas Σi by the hexagonal areas. This approximation
gives a sufficient order estimation of the exponential sup-
pression, enough for our purpose, though some sub-leading
corrections are neglected. Actually, in our model, all the
hexagons reduce to triangles, because some intersecting
points always coincide, and only three of the six sit at the
different places. Hence, we obtain the following result:

gu
αβa=1 = gd

αβa=1 =


ε1ε3 ε1ε2ε3 ε2
1ε3 ε1ε2ε3 ε2

1ε3 ε2
1ε2ε3

ε1ε2 ε1ε
2
2 ε2

1ε2 ε1ε
2
2ε

2
3 ε2

1ε2ε
2
3 ε2

1ε
2
2ε

2
3

ε1 ε1ε2 ε2
1 ε1ε2ε

2
3 ε2

1ε
2
3 ε2

1ε2ε
2
3

ε1ε2 ε1ε
2
2 ε2 ε1ε

2
2ε

2
3 ε2ε

2
3 ε2

2ε
2
3

ε1 ε1ε2 1 ε1ε2ε
2
3 ε2

3 ε2ε
2
3

ε1ε2ε3 ε1ε
2
2ε3 ε2ε3 ε1ε

2
2ε3 ε2ε3 ε2

2ε3




αβ

, (35)

gu
αβa=2 = gd

αβa=2 =


ε2
2ε3 ε2ε3 ε1ε

2
2ε3 ε2ε3 ε1ε

2
2ε3 ε1ε2ε3

ε2 1 ε1ε2 ε2
3 ε1ε2ε

2
3 ε1ε

2
3

ε2
2 ε2 ε1ε

2
2 ε2ε

2
3 ε1ε

2
2ε

2
3 ε1ε2ε

2
3

ε2
1ε2 ε2

1 ε1ε2 ε2
1ε

2
3 ε1ε2ε

2
3 ε1ε

2
3

ε2
1ε

2
2 ε2

1ε2 ε1ε
2
2 ε2

1ε2ε
2
3 ε1ε

2
2ε

2
3 ε1ε2ε

2
3

ε2
1ε2ε3 ε2

1ε3 ε1ε2ε3 ε2
1ε3 ε1ε2ε3 ε1ε3




αβ

, (36)

gu
αβa=3 = gd

αβa=3 =


ε1ε
2
2ε3 ε1ε2ε3 ε2

1ε
2
2ε3 ε1ε2ε3 ε2

1ε
2
2ε3 ε2

1ε2ε3

ε1ε2 ε1 ε2
1ε2 ε1ε

2
3 ε2

1ε2ε
2
3 ε2

1ε
2
3

ε1ε
2
2 ε1ε2 ε2

1ε
2
2 ε1ε2ε

2
3 ε2

1ε
2
2ε

2
3 ε2

1ε2ε
2
3

ε1ε2 ε1 ε2 ε1ε
2
3 ε2ε

2
3 ε2

3

ε1ε
2
2 ε1ε2 ε2

2 ε1ε2ε
2
3 ε2

2ε
2
3 ε2ε

2
3

ε1ε2ε3 ε1ε3 ε2ε3 ε1ε3 ε2ε3 ε3




αβ

, (37)

gu
αβa=4 = gd

αβa=4 =


ε3 ε2ε3 ε1ε3 ε2ε3 ε1ε3 ε1ε2ε3

ε2 ε2
2 ε1ε2 ε2

2ε
2
3 ε1ε2ε

2
3 ε1ε

2
2ε

2
3

1 ε2 ε1 ε2ε
2
3 ε1ε

2
3 ε1ε2ε

2
3

ε2
1ε2 ε2

1ε
2
2 ε1ε2 ε2

1ε
2
2ε

2
3 ε1ε2ε

2
3 ε1ε

2
2ε

2
3

ε2
1 ε2

1ε2 ε1 ε2
1ε2ε

2
3 ε1ε

2
3 ε1ε2ε

2
3

ε2
1ε2ε3 ε2

1ε
2
2ε3 ε1ε2ε3 ε2

1ε
2
2ε3 ε1ε2ε3 ε1ε

2
2ε3




αβ

. (38)

Since we have six pair of Higgs fields and only the composite
Higgs fields have Yukawa couplings, there are eight Yukawa
coupling matrices for quark masses.

All of these Yukawa matrices are non-trivial in the sense
that they differ from the factorizable form of (15). Detailed
calculation is necessary for full analysis of these Yukawa
matrices by varying parameters. However, our purpose is
not to analyze this model in detail, but to show the possi-
bility for leading to non-trivial results in our scenario, i.e.

non-vanishing mass ratios and mixing angles, which can
be realistic. Therefore, here we show a simple case.

Now, let us consider the case with ε2 � ε1. In this
case, the modes u1 and u5 as well as q3, q5, d3 and d5
dominantly gain large masses through the interactions of
(22) and (24) with the coupling matrices of (32), (33)
and (34). The other modes approximately correspond to
four generations. For example, let us consider the Yukawa
matrices, gu

a=2 and gd
a=3, that is, we assume that one pair of

composite Higgs doublet fields, (H̄(1)
3 , H

(2)
2 ), is dominant

to generate quark mass matrices at the weak scale. Then we
consider the parameter region ε2 � ε3 � ε1(∼ 1), and in
this parameter region the matter fields (q2, q4, q6), (u2, u6)
and (d2, d6) have large entries in the Yukawa matrices gu

a=2
and gd

a=3. Here, let us concentrate ourselves on two heavy
modes among four generations. The (2 × 2) submatrices
with large entries in the Yukawa matrices gu

a=2 and gd
a=3

are written up to O(ε2
3) as

gu
a=2 →

(
1 0

ε2
1ε3 ε1ε3

)
, (39)

for the up sector,

gd
a=3 →

(
ε1 0

ε1ε3 ε3

)
, (40)

for the down sector in the field basis ((q2 + q4)/
√

2, q6),
(u2, u6), (d2, d6).

Now we can calculate mass eigenvalues of two heavy
modes among four generations, i.e. mu,3 and mu,4 for the
up sector and md,3 and md,4 for the down sector, and their
mixing angle V34. The mass ratios and the mixing angle is
obtained as
mu,3

mu,4
≈ ε1ε3,

md,3

md,4
≈ ε3

ε1
, V34 ≈ ε3, (41)

that is, we have the following relation:√
mu,3

mu,4

md,3

md,4
≈ V34, (42)

at the composite scale.
It is interesting to compare these results with the ex-

perimental values of quark mass ratios, mc

mt
and ms

mb
, and

the mixing angle Vcb. At the weak scale, the experimental
values of mass ratios, mc

mt
= 0.0038 and ms

mb
= 0.025, lead to

√
mc

mt

ms

mb
= 0.01, (43)

and the mixing angle is

Vcb = 0.04. (44)

We find that the values of parameters ε1 ∼ 0.5 and ε3 ∼
0.01 lead to an almost realistic structure of the quark
Yukawa coupling matrices. Note that our approximation
is reliable as order estimation.
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We have shown that the structure of the Yukawa cou-
pling matrices at least for the (2 × 2) sub-matrices can
be realistic in the simple case through our scenario of the
dynamical generation of Yukawa coupling matrices. The
most relevant fact is the different origin of the generation
from that in the conventional intersecting D-brane models.
The origin of the generation is not the multiple intersection
of D-branes, but many different D-branes with the same
multiplicity and the same winding numbers.

We give several comments in order before closing
this section.

In this model a large Yukawa coupling is obtained in
case of which all six localization points of “preons” are
coincides in all three tori. Therefore, it seems very difficult
to obtain the Yukawa coupling of the order of unity. But we
have shown that it is possible and can accidentally happen
(see (39)).

For more rigorous investigations, we should take care of
the normalization of fields. The low-energy effective fields
in string theory should be normalized by considering the
moduli dependence of the Kähler potential. A concrete
analysis on the moduli dependence of the Kähler potential
in type IIA intersecting D-brane models is given in [20].
The normalization of the low-energy effective field after
“hypercolor” confinement should also be considered more
precisely. Unfortunately, there is no established method to
obtain the Kähler potentials for composite fields in strong
coupling gauge theories in four dimensions, except for some
special cases [29,30].

5 Conclusions

The structure of Yukawa coupling matrices in models from
type IIA T 6/(Z2 × Z2) orientifolds (T 6 = T 2 × T 2 × T 2)
with intersecting D-branes has been investigated. There is
a difficulty to have a realistic Yukawa coupling matrices
in the models in which the generation structure of quarks
and leptons is originated from the multiple intersection
of D-branes. On the other hand, it has been shown that
the structure of Yukawa coupling matrices in the models
with dynamical generation of Yukawa coupling matrices is
non-trivial. Indeed, realistic values of the mixing angles Vcb

and mass ratios mc/mt and ms/mb can be realized. The
most relevant fact is the different origin of the generation.
The origin of the generation is not the multiple intersection
of D-branes, but many different D-branes with the same
multiplicity and the same winding numbers.

Here we give a comment on the origin of CP violating
phases. Inclusion of Wilson lines is one source of CP phases
in Yukawa matrices [17]. As another source, the holomor-
phic dynamical scales ΛR,L,H may provide CP phases in
effective Yukawa couplings in this class of models.

Although there is the possibility of having realistic
Yukawa coupling matrices, this class of models with dy-
namical generation of Yukawa coupling matrices have many
other phenomenological issues to be solved: constructing
models with three generations and light Higgs pairs with
a realistic µ-term for electroweak symmetry breaking, re-
alization of the supersymmetry breaking, and so on. In

addition to these which are common in all the supersym-
metric type IIA intersecting D-brane models, composite
models usually have the problem of rapid proton decay. It
would be very interesting to explore more realistic models
by incorporating the results of efforts of model building
based on the field theory into the framework of the inter-
secting D-brane model.
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